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Abstract. The aim of the authors of the research work is to develop and build a stochastic model of the actual 

process of grinding feed raw materials, taking into account the zoning of the grinder working chamber. The 

modeling is based on the means of the correlation random functions theory, the theory of automatic control, 

engineering applications of operational calculus and Markov processes. As a result, the authors have developed 

and verified a stochastic model of the air-product layer action in the conditional zones of the working chamber 

and at the transition boundaries of conditional zones in the form of transfer and correlation functions, taking into 

account the diversity of factors influencing the efficiency of the feed raw stuff grinding process. Experimental 

studies have confirmed a fairly good adequacy of the models to the real process with optimal loading of the 

grinding chamber. During the modeling, random processes in the working chamber of the grinder are classified 

as Markov processes of reproduction (grinding, reducing the size of grains to the required size) and death (re-

grinding, walk through the holes of the sieve). The authors’ method of determining the parameters of the air-

product layer in the conditional zones of the grinder working chamber and evaluating the boundary effects of 

transient processes has been many times used in the modeling of technological processes and feed production 

systems. Checking the model for adequacy to the real process was carried out in a series of laboratory and 

production experiments, the results of which formed the basis of engineering and technical solutions to the 

problem of grinding efficiency in feed preparation. Experimental samples of grinders (closed-type hammer mills 

with sieves) with structural changes, fixed by the Russian Federation patents, have been tested and successfully 

operated in the farms of the Orenburg region.  
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Introduction 

Reduction of energy intensity of technological processes and development of innovative methods 

of resource saving remain the most important problems of modern agricultural production. The 

problem is highly relevant because of contradictions between traditional technologies and the need for 

their modernization, between the applied methods in the field of improving the efficiency of 

technological processes and innovative development requirements, between the existing theoretical 

justifications and modern requirements of community, universality and information capacity of actual 

processes models.  

The above fully applies to one of the most complex processes of agricultural production: the 

process of forage preparation and its component-grinding of grain raw stuff. Current trends in the 

description of the process of grinding feed are based on the principles set forth in the works of Kiskalt, 

Rittinger, Kick, Rebinder, Bond and many other researchers. We identified four main approaches to 

solving the problem of modeling of feed raw stuff grinding process, after comparative analysis of the 

currently available theoretical justifications of the grinding process [1-4] and in other sources. 

Brief overview shows that mostly APL (air-product layer) is considered either as a stream of 

discrete particles without taking into account their interaction, which requires classifying and 

distributing a large number of influencing factors in levels of importance, or as a continuous stream, 

but without paying attention to grinding features of separate grains. The modern ideology of actual 

process modeling allows solving the problem of natural-science dualism in the framework of 

stochastic modeling and gives access to new engineering solutions based on the process control 

capabilities [4]. 

Materials and methods 

Let us build a stochastic model of the grain raw stuff grinding process in consideration with the 

zoning of the grinding chamber for improving of energy and technological performance of the process 

by aligning the characteristics of the air-product layer. 

Studies of the internal structure of the grain raw stuff grinding process confirm the unevenness of 

the air-product layer (APL) in different parts of the working chamber of a standard grinder (closed-
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type hammer mill) [1-7]. Our comprehensive analysis of APL action and factors affecting the 

efficiency of the grinding process allowed us to hypothesize the presence of conditional zones of 

relative uniformity of the layer and relative stability of its characteristics inside the working chamber 

of the grinder [8; 9]. 

We show the conditional zones of the hammer mill working chamber on development drawing 

(Figure 1). 

 

Fig.1. Conditional zones (development drawing) 

The process of reproduction (grinding) and death (re-grinding, walkthrough the sieve) of some 

initial combination particles (grains) in the working chamber, hereinafter referred to as TD (technical 

device), under the steady-state mode of operation, we will consider as continuous random and denote 

X(t) . The combination of particles, able to reproduction and death, we will as denote system S. Under 

the i-th state of the system Si we will understand the quantity of particles produced at the certain 

moment of time (according to the certain state), where we can find ready for reproduction and death 

ones. There is every reason to take the random process X(t) for the Markov process of death and 

reproduction with discrete states and continuous time [8; 9]. TD is in a steady- state mode that the 

system states, although changing randomly, but the probabilities pi(t) (i = 1,2...) remain constant  

pi (t) = P{S(t) = si}: where S(t) – a random state of the system at time t, that is, the process consists in 

the transition of the system from one state to another.  

We construct a marked graph of the reproduction-death process states (Figure 2), where λi(t) – 

flow intensities of events leading to an increase of the random function X(t) (reproduction flows),  

μi (t) – flow intensities of events leading to a decrease of the random function X(t) (death flows). 

 

Fig. 2. Graph of process states X(t) 

Flows of reproduced and death particles will be considered as the simplest, having the properties 

of stationarity, ordinariness and lack of aftereffect. 

The APL under study, passing conditional zones, undergoes significant changes. Therefore, the 

process of reproduction and death of APL particles in different zones will proceed with its own 

characteristics, which should be reflected in the mathematical model. It is experimentally established 

that in each conditional zone the APL acts relatively stable [1-8], therefore, it can be assumed that the 

intensities of reproduction and death processes within one zone are constant.  

In the system of introduced assumptions the random process of death and reproduction of 

grinding material particles in one separate zone is classified as Markov process with discrete states, 

continuous time and a finite number of states. There is every reason for this, since the time of APL 

passage through one conditional zone is very small, and the number of system states is large (the time 

of one APL turnover has the value about 1/3000 minutes, therefore, the time of passage through the 

arbitrary zone is obviously less than the indicated value). In the steady-state mode of TD operation, the 

investigated random process X(t) is stationary and has an ergodic property (there are no states without 

output and without input). 
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For any state of an ergodic system, the sum of all incoming probability flows is equal to the sum 

of all outgoing flows. Here, the flow of probability that transfers the system from state Si to state Sj, we 

understand as an expression of the form pi (t)·λi (t) or pi (t)·μi (t), where λi-intensities of reproduction 

flows, μi-intensities of death flows (i = 0,1,2,..n). 

The one-dimensional distribution law of the process X(t) is described by the Kolmogorov equation 

system corresponding to the graph [10] (Figure 2). 
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where pi(t) = P{S(t) = si} = P{X(t) = i} and λi – intensities of reproduction flows; 

 μi – intensities of death flows (i = 0,1,2,..). 

Suppose i = 0,1,2,…, n,…, then we have: 
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Let us sum up all the left and right parts: 
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Since in a particular conditional zone:  

 ( ) ( ) ( ) ( )tμ=tμ;tλ=tλ ii
, then 
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 ( ) ( ) ( ) ( )tmtμtλ=dttdm xx ⋅−/  – differential equation of order I. 

Assuming, on the basis of the above reasoning, in each conditional zone: λ = const; μ = const, we 

obtain an ordinary differential equation of order I, linear regarding mx(t) and t: 

 ( ) ( )tmμλ=dttdm xx ⋅−/  or ( ) ( ) λ=tμm+dttdm xx / . 

Solving it, we get: mx(t) = λ/μ. Reasoning similarly, we find: Dx = λ/μ. 

Since we have obtained mx = Dx = λ/μ, we can state that in the stationary mode the one-

dimensional distribution law of a random process in a separate zone is Poisson’s law with the 
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parameter a = λ/μ pi = ai /i! · e-a
, that is, we have shown that the number of particles in any volume of 

the circulating layer obeys Poisson’s law. 

Having been able to identify a random process in a particular zone, we proceed to the description 

of boundary effects. We divide the general random process of death and reproduction X(t) into 

components, corresponding to the conditional zones X1 (t), X2 (t), X3 (t), X4 (t) (Figure 3). 

 

Fig. 3. Dependency graph of random processes of death  

and reproduction corresponding to conditional zones 

The practice of stochastic modeling of real processes allows us to determine the probabilistic 

characteristics of the random process of death and reproduction Xi (t) (i = 1, 2 ,3 ,4) using three groups 

of non-random parameters: 

1. the number of possible states ni + 1 (since the process under study is a Markov process with 

discrete states); 

2. intensities of reproduction flows λk
i
(k = 0, 1,… ni); 

3. intensities of death flows μk
i
(k = 0, 1,… ni). 

As a result, the random process X(t), which components are the processes Xi(t) (i = 1,2,3,4), can 

be considered transitive (any of the components will be both controlling and controlled by the death 

and reproduction process). At the same time the process parameters X2(t)~(λk
2
; μk

2
; n2) will depend on 

the type and value of the process parameters X1(t)~(λk
1
; μk

1
; n1). We consider that the inverse influence, 

indicated in the graph (Figure 3) by dotted arrow, can be neglected. Process parameters of 

X3(t)~(λk
3
; μk

3
; n3) depend on types and values of the process parameters of X2(t)~(λk

2
; μk

2
; n2) etc. 

The process considered by us in each zone is stationary in a broad sense, i.e. its probabilistic 

characteristics do not depend on time. In addition, each random process Xi(t) (i = 1,2,3,4) has an 

ergodic property, since it proceeds uniformly and the set of states is finite. Therefore, any process 

implementation of sufficiently long duration will “ well “ represent the entire possible set of 

implementations. We define the probabilistic characteristics of the ergodic stationary random process 

Xi(t) as follows [10]:  
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We write down the correlation function of the studied process using the density of dispersion 

distribution over the frequencies of the continuous spectrum: 
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and let us go to the spectral density via cosine by Fourier transformation: 
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Based on the reasoning, we build a mathematical model of the grain raw stuff grinding process. 

Consider two conditional zones separated by a boundary. The transition of APL through the boundary 

entails a change in the probabilistic characteristics of the random process Xi(t) (i = 1,2,3,4). A 

sufficiently small neighborhood of the boundary will be considered as a dynamic system, the input of 

which is a random process Xi(t), and the output is a random process Xi(t) (Figure 4). 

 

Fig. 4. Transformation of a stationary random process by a stationary dynamical system 

The mathematical model of a dynamic system should be understood as a set of four elements: the 

state space, the space of input signals, the space of output signals and the relations linking the input, 

output signals and the state vector of the system (the whole set of variable states of the system). 

Speaking about the characteristics of the system, always have in mind the characteristics of its 

mathematical model, since the state of any system, its impact on the environment, all external effects 

on it cannot be described by any observable and even more finite set of values. The main characteristic 

of the system is its operator, which determines the mechanism for generating an output signal from a 

given input signal. The important characteristic of the quality of the system is stability, i.e. the ability 

of the system to return to its original state after removal of disturbing influences that have changed the 

amplitude and shape of the output signal. There is every reason to take the considered neighborhood of 

the boundary between conditional zones as a linear dynamic stationary asymptotically stable system.  

In practice, the random process Xi(t) is replaced by its implementation xi(t), and the random 

process Xj(t) respectively by the implementation xj(t), with xj(t) = xjc(t) + xje(t). With time, the natural 

oscillations xjc(t) of a stationary linear system decay, so we can consider only the second component 
xje(t), which describes the forced oscillations under the influence of the input implementation xj(t). 
With this in mind, the harmonic oscillation of the output signal will be determined by the formula, 

xj(t) = G(iω)eiω·t
, where G(iω) is the transfer function of a stationary linear system. 

Thus, it is sufficient to define estimates 
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i
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** ~~~~~~  

as a result of statistical processing of the corresponding implementations of xi(t) and xj(t) of random 

processes Xi(t) and Xi(t) at the input and output of a stationary linear dynamic system (boundary with 

neighborhood). Assuming the obtained estimates are approximately equal to the probabilistic 

characteristics, we find the transfer functions of each dynamic system 
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The system of the transfer functions found determines the mathematical model of the grinding 

process under study. Models of processes in conditional zones will be correlation functions  

 ( ) ( ) ( ) ( )τk,τk,τk,τk xxxx
4321 ~~~~

. 

Results and discussion 

We will use mathematical expressions of characteristics (2), but we will transform them a little for 

convenience of practical application. Replace the integral  
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Denote τ = m·Δt = m·T/n, where m – the parts quantity of segment Δt time Т and receive 

expression for the correlation function: 
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Normalizing the correlation function, we get ρx
i
(τ). We approximate, thus smooth out the irregular 

oscillations of the experimentally found function by means of the theoretical function ρx
*i
(τ), the 

parameters of which are selected by the method of least squares, what allows us to obtain a normalized 

spectral density of the random process of death and reproduction Xi(t) 
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We apply the principle of the cybernetic box [10-12] to obtain transfer functions of linear 

dynamical systems (neighborhoods of boundaries between conditional zones). 

It is known that the spectral density of a stationary random process Xj(t) will be equal to the 

spectral density of the process Xi(t), multiplied by the square of the frequency response module (TF) 

[10-12]  
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obtained as a result of experimental data processing. On their basis, estimates of spectral densities 

(normalized spectral densities) and transfer functions can be found 
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To determine the estimates of spectral densities, we use the correspondence table of correlation 

functions, most often used in engineering studies, and spectral densities. We were guided by the 

following considerations, when selected an analytical correlation function: the function should not 

contain a multiplier of the form e-α|τ|
, leading to monotony; it should include both harmonics.  

After a comparative analysis we gave preference to the function of the form 

 ( ) ( )
τ

βτ
βτα=τkx

sin
1cos22

2
⋅− , (9) 

with corresponded spectral density 
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where  α and β – parameters chosen by the least squares method. 

In this case, the error of the system operation, caused by a change in the frequency of the input 

signal, can be determined by the formula [11; 12] 

 ( ) ( )iωG=ωεx −1   (11) 

Novelty of the research 

The novelty of the research conducted by the authors is as follows. The obtained model fully 

describes the action of APL in the working chamber of the grinder and allows us to conclude the 

following: 

1. the number of particles in any volume of circulating APL obeys Poisson’s law;  

2. the neighborhood of the boundary between conditional zones is a linear dynamic stationary 

asymptotically stable system;  

3. serial connection of stationary linear systems gives a stationary linear system, the transfer 

function of which is equal to the product of the transfer functions of the connected systems 

 ( ) ( )iωGП=iωG k=k
4

1
, 

and the result of such a connection does not depend on the order of connection; 

4. the system of the found transfer functions  
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determines the global mathematical model of the grain raw stuff grinding process in the working 

chamber; 5) local model of APL action in conditional zones of the grinder will serve as a system of 

correlation functions  

 ( ) ( ) ( ) ( )τk,τk,τk,τk xxxx
4321 ~~~~

  of the form ( ) ( )
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The model constructed by the authors was verified in the course of laboratory and production 

experiments on the basis of the Engineering Faculty and training and production facilities of the 

Orenburg State Agrarian University. Model verification yielded the following results (grinded material 

– medium dry barley) [13]: 

zone α: α = 4.487∙10
3
, β = 0.692; zone β1: α = 3.25∙10

3
, β = 0.655;  

zone γ: α = 4.787∙10
3
, β = 3.301; zone β2: α = 3.676∙10

4
, β = 1.327.  

For transient processes (8, 11): 

55.7

15.7
)( 21 =→ωiG , 053.0)( ≈ωε х ; 

41.4

205.4
)( 32 =→ωiG , 046.0)( ≈ωε х ;  
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901.2

815.2
)( 43 =→ωiG , 0296.0)( ≈ωε х ; 

55.3

487.3
)( 14 =→ωiG , 018.0)( ≈ωε х . 

Conclusions 

Experimental studies have confirmed a fairly good adequacy of the models to the real process 

with optimal loading of the grinding chamber. There were developed recommendations for improving 

of the working chamber design of a closed type hammer mill, which help align the characteristics of 

APL around the perimeter of the working chamber and “blur” the boundaries of conditional zones. 

The established regularities of APL action in the working chamber of the grinder, which determine the 

prospects for management of its parameters, formed the basis of inventions secured by patents of the 

Russian Federation: Grain grinder (patent No. 25687540), Piezoelectric shock sensor (patent 

No. 2689895), Method for controlling the granulometric composition of grinded grain material (patent 

No. 2688352), Method for determining the granulometric composition of grinded grain material 

(patent No. 2688771), Software tool for pulse signal processing of an electronic oscilloscope during 

grain raw material grinding (ST No. 2018611777), Program for fractional composition calculation of 

grain raw materials during grinding in a hammer mill (ST No. 2018618240). 

Prototypes of shredders (closed-type hammer crushers with grates) with structural changes have 

been tested and successfully operated in the farms of the Sharlyk and Alexander districts of the 

Orenburg region. 
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